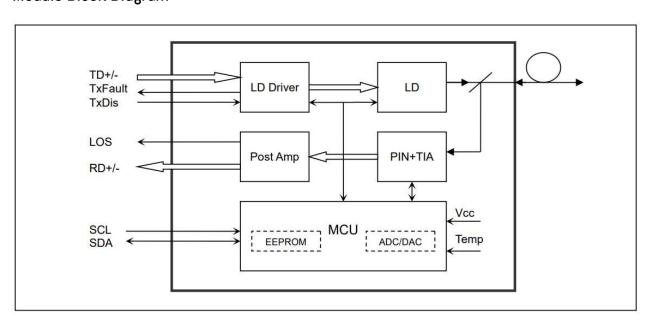


1.25Gbps Single-Mode BiDi Simplex SFP Transceiver

Features


- > Operating Data Rate up to 1.25Gbps
- > 1310nm FP / 1550nm DFB laser with PIN photodetector
- > 10km with 9/125 μ m SMF
- > Single 3.3V Power Supply and TTL Logic Interface
- > Hot-Pluggable SFP Footprint Simplex LC Connector Interface
- > Class 1 FDA and IEC60825-1 Laser Safety Compliant
- > Operating Case Temperature:
 - > Standard: 0°C~+70°C
- > Compliant with SFP MSA Specification
- > Digital Diagnostic Monitor Interface Compatible with SFF-8472

Applications

- > Gigabit Ethernet Switches and Routers
- > Fibre Channel Switch Infrastructure
- > Switch to Switch Interface
- > Other Optical Links

Module Block Diagram

Absolute Maximum Ratings

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Table 2 - Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Tc	0		70	°C
Power Supply Voltage	Vcc	3.13	3.3	3.47	V
Power Supply Current	lcc			300	mA
Data Rate			1.25		Gbps

Optical and Electrical Characteristics

Table 3 - Optical and Electrical Characteristics

Parar	meter	Symbol		Min	Typical	Max	Unit	Notes
	Transmitter							
Ce	entre Waveleng	th	λc	1260/1530	1310/1550	1360/1570	nm	
Spe	ctral Width (RN	MS)	Δλ			4	nm	
Ave	rage Output Po	wer	Pout	-9		-3	dBm	1
E	Extinction Ratio)	ER	9			dB	
Optical Ri	se/Fall Time (2	0%~80%)	tr/tf			0.26	ps	
Data In	put Swing Diffe	erential	V_{IN}	400		1800	mV	2
Input D	ifferential Impe	edance	ZIN	90	100	110	Ω	
TX Disable	Disa	able		2		Vcc	٧	
IX DISAGLE	Ena	ble		0		0.8	V	
TX Fault	Fa	ult		2		Vcc	٧	
IX Fault	Nor	mal		0		0.8	V	
				Receiver				
Ce	entre Waveleng	th	λc	1480/1260		1580/1360	nm	
Re	ceiver Sensitiv	ity				-23	dBm	3
R	eceiver Overloa	d		-3			dBm	3
LOS De-Assert		LOSD			-24	dBm		
LOS Assert		LOSA	-35			dBm		
LOS Hysteresis			1		4	dB		
Data Output Swing Differential		Vout	400		1800	mV	4	
	LOS		High	2		Vcc	V	
			Low			0.8	V	

Notes:

- 1. The optical power is launched into SMF.
- $2. \ \mathsf{PECL} \ \mathsf{input}, \ \mathsf{internally} \ \mathsf{AC\text{-}coupled} \ \mathsf{and} \ \mathsf{terminated}.$
- 3. Measured with a PRBS 2^7 -1 test pattern @1250Mbps, BER $\leq 1 \times 10^{-12}$.
- 4. Internally AC-coupled.

Timing and Electrical

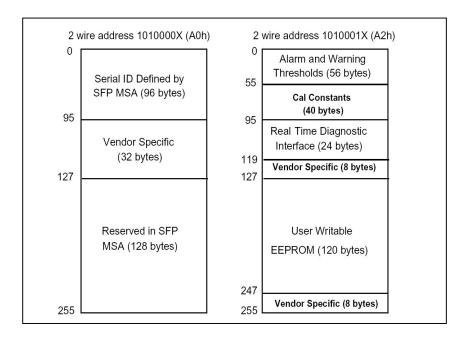
Table 4 - Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock			400	KHz
MOD_DEF (0:2)-High	V_{H}	2		Vcc	V
MOD_DEF (0:2)-Low	V_L			0.8	V

Diagnostics

Table 5 - Diagnostics Specification

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	-9 to -3	dBm	±3dB	Internal / External
RX Power	-23 to -3	dBm	±3dB	Internal / External



Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions via the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Pin Diagram

20	VeeT	1 VeeT		
19	TD-	2 TxFault		
18	TD+	3 Tx Disable		
17	VeeT	4 MOD-DEF(2)		
16	VccT	5 MOD-DEF(1)		
15	VccR	6 MOD-DEF(0)		
14	VeeR	7 Rate Select		
13	RD+	8 Los		
12	RD-	9 VeeR		
11	VeeR	10 VeeR		
	Top of Board (as viewed thru top of board)			

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V _{EER}	Receiver ground	1	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V _{EER}	Receiver ground	1	
15	Vccr	Receiver Power Supply	2	
16	Vcct	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V _{EET}	Transmitter Ground	1	

Notes:

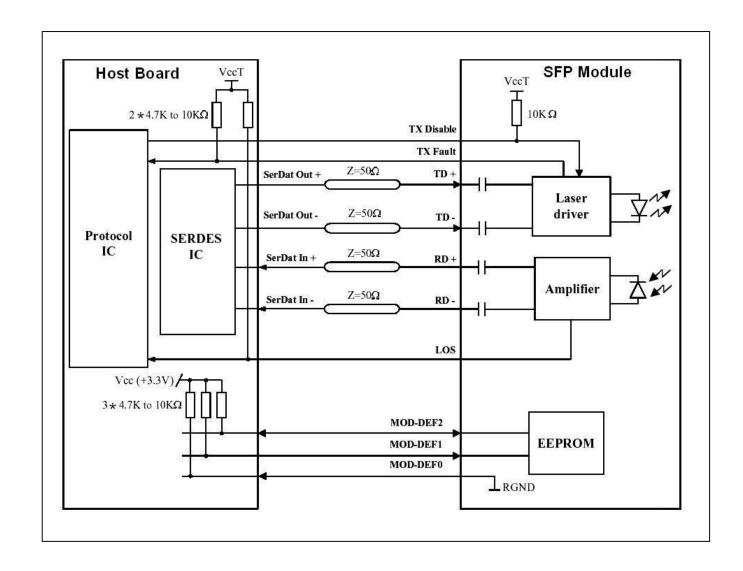
Plug Seq.: Pin engagement sequence during hot plugging.

- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on (>0.8V, < 2.0V): Undefined
High (2.0 to 3.465V): Transmitter Disabled
Open: Transmitter Disabled

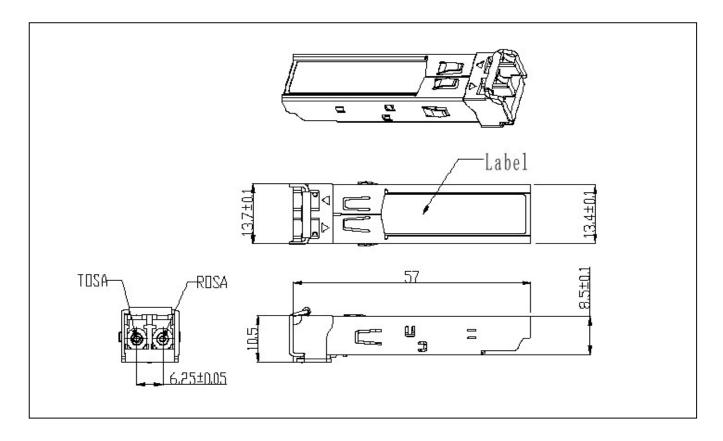
3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.

 $\operatorname{\mathsf{Mod}\text{-}Def} 0$ is grounded by the module to indicate that the module is present


 $\operatorname{\mathsf{Mod-Def}} 1$ is the clock line of two wire serial interface for serial ID

 $\operatorname{\mathsf{Mod}\text{-}Def} 2$ is the data line of two wire serial interface for serial $\operatorname{\mathsf{ID}}$

- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.



Recommended Interface Circuit

Mechanical Dimensions

Regulatory Compliance

ADVANCE SFP transceivers are designed to be Class I Laser safety compliant and is certified per the following standards

Feature	Agency	Standard	Certificate / Comments
Laser Safety	FDA	CDRH 21 CFR 1040 and Laser Notice No. 50	1120289-000
		EN 60825-1: 2007	
Product Safety	BST	EN 60825-2: 2004	BT0905142009
		EN 60950-1: 2006	
Environmental protection	SGS	RoHS Directive 2002/95/EC	GZ0902008347/CHEM
EMC	WALTEK	EN 55022: 2006+A1: 2007	WT10093768-D-E-E
EMU		EN 55024: 1998+A1: 2001+A2: 2003	M I T0092 \ 00-D-E-E

References

- 1. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.
- 2. Telcordia GR-253-CORE and ITU-T G.957 Specifications.

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by ADVANCE before they become applicable to any particular order or contract. In accordance with the ADVANCE policy of continuous improvement specifications may change without notice.

The publication of information in this data sheet does not imply freedom from patent or other protective rights of ADVANCE or others. Further details are available from any ADVANCE sales representative.

Ordering Information

Advance Part Code	Description
NW-SFP0-01-25-B131-10X	1.25G SM 1310nm TX/1550nm RX 10km with DDM
NW-SFP0-01-25-B155-10X	1.25G SM 1550nm TX/1310nm RX 10km with DDM